Skip to main content

Scott Phillips

Scott Phillips

Scott Phillips is a full Professor in the Micron School of Materials Science & Engineering at Boise State University. He earned his Ph.D. from Paul A. Bartlett at UC Berkeley in 2004 and trained as a postdoctoral fellow in George Whitesides’ group (Harvard). He started his independent career at Penn State in 2008. His research interests include developing sustainable plastics, designing signal amplification reagents, and developing new classes of smart materials. Dr. Phillips’ awards include the NSF CAREER award, DARPA Young Faculty Award, Beckman Foundation Young Investigator Award, Eli Lilly and Company Young Investigator Award, the Arthur F. Findeis Award, and he held fellowships from the Alfred P. Sloan Research Foundation and the Camille & Henry Dreyfus Foundation.

S. Phillips CV (pdf)  – Selected Details Included Below

Education

1999–2004: University of California, Berkeley; Berkeley, CA, Degree Awarded: Ph.D. Organic Chemistry

1995–1999: California State University, San Bernardino (CSUSB); San Bernardino, CA, Degree Awarded: B.S. Chemistry: Biochemistry emphasis.

Previous Experience

2017–present: Professor, Micron School of Materials Science & Engineering, Boise State University, ID

2017: Professor, Penn State University, Department of Chemistry, University Park, PA

2016–2017: Stephen and Patricia Benkovic Early Career Associate Professor of Chemistry, Penn State University, Department of Chemistry, University Park, PA

2014–2016: Martarano Associate Professor of Chemistry, Penn State University, Department of Chemistry, University Park, PA

2008–2014: Martarano Assistant Professor of Chemistry, Penn State University, Department of Chemistry, University Park, PA

2006–2008: Research Fellow with George M. Whitesides, Harvard University, Department of Chemistry & Chemical Biology, Cambridge, MA

2004–2006: Postdoctoral Fellow with Matthew D. Shair, Harvard University, Department of Chemistry & Chemical Biology, Cambridge, MA

1999–2004: Graduate Student with Paul A. Bartlett, University of California, Berkeley, Department of Chemistry, Berkeley, CA

Publications

Boise State:

“Self-propagating amplification reactions for molecular detection and signal amplification: Advantages, pitfalls, and challenges”, Sun, X. L.; Shabat, D.; Phillips, S. T.; Anslyn, E. V.*, J. Phys. Org. Chem., 2018, 31, SI (article number e3827).

Penn State:

  •  “Coupling Activity-Based Detection, Target Amplification, Colorimetric and Fluorometric Signal Amplification, for Quantitative Chemosensing of Fluoride Generated from Nerve Agents”, Sun, X. L.; Reuther, J. F.; Phillips, S. T.; Anslyn, E. V.*, Chemistry-A European Journal, 2017, 23, 3903–3909.
  •  “Design, Synthesis, and Characterization of Small Molecule Reagents That Cooperatively Provide Dual Readouts for Triaging and, When Necessary, Quantifying Point-of-Need Enzyme Assays”, Brooks, A. D.; Mohapatra, H.; Phillips, S. T.*, J. Org. Chem., 2015, 80, 10437–10445. Selected as a Featured Article.
  •  “Stimuli-Responsive Polymer Film that Autonomously Translates a Molecular Detection Event into a Macroscopic Change in Its Optical Properties via a Continuous, Thiol-Mediated Self-Propagating Reaction”, Mohapatra, H.; Kim, H.; Phillips, S. T.*, J. Am. Chem. Soc. 2015, 137, 12498–12501.
  •  “Rapid, On-Command Debonding of Stimuli-Responsive Cross-Linked Adhesives by Continuous, Sequential Quinone Methide Elimination Reactions”, Kim, H.; Mohapatra, H.; Phillips, S. T.* Angew. Chem. Int. Ed., 2015, 54, 13063–13067. Selected as a Very Important Paper; Highlighted in SynFacts 2015; 11(11): 1153.
  •  “Aromatizing Unzipping Polyester for EUV photoresist”, Matsuzawa, K.; Mesch, R.; Olah, M.; Wang, W.; Phillips, S. T.; Willson, C. G. Proc. SPIE—Int. Soc. Opt. Eng. 2015, 9425, 1–8. Selected for the SPIE Advanced Lithography 2015 Jeff Byers Award.
  • “Depolymerizable poly(benzyl ether)-based materials for selective room temperature recycling”, Baker, M. S.; Kim, H.; Olah, M. G.; Lewis, G. G.; Phillips, S. T.*; Green Chem. 2015, 17, 4541–4545.
  • “Surface-Accessible Detection Units in Self-Immolative Polymers Enable Translation of Selective Molecular Detection Events Into Amplified Responses in Macroscopic, Solid-State Plastics”, Yeung, K.; Kim, H.; Mohapatra, H.; Phillips, S. T.*; J. Am. Chem. Soc. 2015, 137, 5324–5327.
  •  “Polymeric materials that convert local fleeting signals into global macroscopic responses”, Kim, H.; Baker, M. S.; Phillips, S. T.*; Chem. Sci. 2015, 6, 3388–3392.
  •  “Consider Designing the Readout First When Developing Point-of-Need Assays”, Phillips, S. T.*, The Analytical Scientist 2015, article #304.
  • “End-capped poly(4,5-dichlorophthalaldehyde): A stable self-immolative poly(aldehyde) for translating specific inputs into amplified outputs, both in solution and the solid state”, DiLauro, A. M.; Phillips, S. T.*; Polym. Chem. 2015, 6, 3252–3258. (Invited contribution to the 2015 Emerging Investigator issue.)
  • “Self-Immolative Poly(4,5-dichlorophthalaldehyde) and its Applications in Multi-Stimuli-Responsive Macroscopic Plastics”, DiLauro, A. M.; Lewis, G. G.; Phillips, S. T.* Angew. Chem. Int. Ed., 2015, 54, 6200–6205.
  • “Strategy for Minimizing Background Signal in Autoinductive Signal Amplification Reactions for Point-of-Need Assays”, Brooks, A. D.; Yeung, K.; Lewis, G. G.; Phillips, S. T.* Analytical Methods, 2015, 7, 7186–7192. (Invited contribution to the 2015 Emerging Investigator issue.)
  • “Amplified Responses in Materials Using Linear Polymers that Depolymerize from End-to-End When Exposed to Specific Stimuli”, Phillips, S. T.*; Robbins, J. S.; DiLauro, A. M.; Olah, M. G. J. Appl. Polym. Sci. 2014, 131, 40992. (Invited review.)
  • “Continuous Head-to-Tail Depolymerization: An Emerging Concept for Imparting Amplified Responses to Stimuli-Responsive Materials”, Phillips, S. T.*; DiLauro, A. M. ACS Macro Lett. 2014, 3, 298–304. (Invited review.) A podcast describing this review is located at http://pubs.acs.org/page/mamobx/audio/index.html
  • “The Expanding Role of Paper in Point-of-Care Diagnostics”, Phillips, S. T.*; Lewis, G. S. Expert Rev. Mol. Diagn. 2014, 14, 123–125. (Invited review.)
  • “A Prototype Point-of-Use Assay That Measures Heavy Metal Contamination in Water Using Time as a Quantitative Readout”, Lewis, G. S.; Robbins, J. S.; Phillips, S. T.* Chem. Commun. 2014, 50, 5352–5354. (Invited contribution to the 2014 Emerging Investigator issue.)
  • “Quantitative Fluorescence Assays Using a Self-Powered Paper-Based Microfluidic Device and a Camera-Equipped Cellular Phone”, Thom, N. K.; Lewis, G. S.; Yeung, K.; Phillips, S. T.* RSC Adv. 2014, 4, 1334–1340.
  • “A Rapid Point-of-Care Assay Platform for Measuring Femtomolar Levels of Active Enzyme Analytes Using Measurements of Time as the Readout”, Lewis, G. S.; Robbins, J. S.; Phillips, S. T.* Anal. Chem. 2013, 85, 10432–10439. Highlighted in: The Wall Street Journal, Science Daily, Phys.Org.com, ACS Global Challenges/Chemistry Solutions (Jan 27, 2014) (http://www.acs.org/content/acs/en/pressroom/podcasts/globalchallenges/combatingdisease/paper-based-device-could-bring-medical-testing-to-remote-locales.html), and others.
  • “Accessibility of Responsive End-Caps in Films Composed of Stimuli-Responsive Depolymerizable Poly(phthalaldehydes)”, DiLauro, A. M.; Zhang, H.; Baker, M. S.; Wong, F.; Sen, A.; Phillips, S. T.* Macromolecules 2013, 46, 7257–7265.
  • “A Self-Powered Polymeric Material that Responds Autonomously and Continuously to Fleeting Stimuli”, Baker, M. S.; Yadav, V.; Sen, A.*; Phillips, S. T.* Angew. Chem. Int. Ed. 2013, 52, 10295–10299. Highlighted in: Nat. Chem., Phys.Org.com, Chemistryviews.org, Innovationsreport.
  • “End-Capped Poly(benzyl ethers): Acid and Base Stable Polymers That Depolymerize Rapidly from Head-to-Tail in Response to Specific Applied Signals”, Olah, M. G.; Robbins, J. S.; Baker, M. S.; Phillips, S. T.* Macromolecules 2013, 46, 5924–5928.
  • “Advances in Materials that Enable Quantitative Point-of-Care Assays”, Phillips, S. T.*; Lewis, G. G. MRS Bulletin 2013, 38, 315–319. (Invited review.)
  • “Phase-Switching Depolymerizable Poly(carbamate) Oligomers for Signal Amplification in Quantitative Time-Based Assays”, Lewis, G. G.; Robbins, J. S.; Phillips, S. T.* Macromolecules 2013, 46, 5177–5183.
  • “Reagents and Assay Strategies for Quantifying Active Enzyme Analytes Using a Personal Glucose Meter”, Mohapatra, H.; Phillips, S. T.* Chem. Commun. 2013, 49, 6134–6136.
  • “Stimuli-Responsive Core-Shell Microcapsules With Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane”, DiLauro, A. M.; Abbaspourrad, A.; Weitz, D. A.; Phillips, S. T.* Macromolecules 2013, 46, 3309–3313.
  • “Effect of Aromaticity on the Rate of Azaquinone Methide-Mediated Release of Benzylic Phenols”, Schmid, K. M.; Phillips, S. T.* J. Phys. Org. Chem. 2013, 26, 608–610.
  • “Reproducible and Scalable Synthesis of End-Cap-Functionalized Depolymerizable Poly(phthalaldehydes)”, DiLauro, A. M.; Robbins, J. S.; Phillips, S. T.* Macromolecules 2013, 46, 2963–2968. Highlighted in Synfacts 2013, 9, 0725.
  •  “Effects of Electronics, Aromaticity, and Solvent Polarity on the Rate of Azaquinone-Methide-Mediated Depolymerization of Aromatic Carbamate Oligomers”, Robbins, J. S.; Schmid, K. M.; Phillips, S. T.* J. Org. Chem. 2013, 78, 3159–3169.
  • “Two General Designs for Fluidic Batteries in Paper-Based Microfluidic Devices That Provide Predictable and Tunable Sources of Power for On-Chip Assays”, Thom, N. K.; Lewis, G. G.; DiTucci, M. J.; Phillips, S. T.* RSC Adv. 2013, 3, 6888–6895.
  • “A Thermally-Stable Enzyme Detection Assay that Amplifies Signal Autonomously in Water Without Assistance from Biological Reagents”, Yeung, K.; Schmid, K. M.; Phillips, S. T.* Chem. Commun. 2013, 49, 394–396.
  • “Using Smell to Triage Samples in Point-of-Care Assays”, Mohapatra, H.; Phillips, S. T.* Angew. Chem. Int. Ed. 2012, 51, 11145–11148.
  • “Phase Switching to Enable Highly Selective Activity-Based Assays”, Mohapatra, H.;
  • Phillips, S. T.* Anal. Chem. 2012, 84, 8927–8931. Selected as an Editor’s Highlight by Anal. Chem.
  • “Quantifying Analytes in Paper-Based Microfluidic Devices Without Using Electronic Readers”, Lewis, G. G.; DiTucci, M. J.; Phillips, S. T.* Angew. Chem. Int. Ed. 201251, 12707–12710.
  • “High Throughput Method for Prototyping Three-Dimensional, Paper-Based Microfluidic Devices”, Lewis, G. G.; DiTucci, M. J.; Baker, M. S.; Phillips, S. T.*
  •     Lab Chip 2012, 12, 2630–2633. One of the top ten most accessed articles in LOC in June 2012.
  • “A Self-Immolative Spacer that Enables Tunable Controlled Release of Phenols under Neutral Conditions”, Schmid, K.; Jensen, L.; Phillips, S. T.* J. Org. Chem. 2012, 77, 4363–4374.
  • “A Small Molecule Sensor for Fluoride Based on an Autoinductive, Colorimetric Signal Amplification Reaction”, Baker, M. S.; Phillips, S. T.* Org. Biomol. Chem. 2012, 10, 3595–3599.
  • “Fluidic Batteries in Paper-Based Microfluidic Devices”, Thom, N. K.; Yeung, K.; Pillion, M. B.; Phillips, S. T.* Lab Chip 2012, 12, 1768–1770. Selected as a “Hot Paper” by the editors of Lab on a Chip.  One of the top ten most accessed articles in LOC in March 2012. Selected as one of the top 10% of all Lab on a Chip articles published this year.
  • “Design of Small Molecule Reagents that Enable Signal Amplification via an  Autocatalytic, Base-Mediated Cascade Elimination Reaction”, Mohapatra, H.; Schmid, K.; Phillips, S. T.* Chem. Commun. 201248, 3018–3020.
  • “Self-Powered Microscale Pumps Based on Analyte-Initiated Depolymerization Reactions”, Zhang, H.; Yeung, K.; Robbins, J. S.; Pavlick, R. A.; Wu, M.; Liu, R.; Sen, A.*; Phillips, S. T.* Angew. Chem. Int. Ed. 2012, 51, 2400–2404. Selected as a “Hot Paper” by the editors of Angewandte Chemie.  Highlighted in:   Chemistry World.
  •  “A Structurally Simple Self-Immolative Reagent that Provides Three Distinct,  Simultaneous Responses per Specific Detection Event”, Nuñez, S. A.; Yeung, K.; Fox,  S.; Phillips, S. T.* J. Org. Chem. 2011, 76, 10099–10113.
  • “Use of Catalytic Fluoride under Neutral Conditions for Cleaving Silicon–Oxygen Bonds”, DiLauro, A.; Seo, W.; Phillips, S. T.* J. Org. Chem. 2011, 76, 7352–7358.  Highlighted in: ChemInform 2012, DOI: 10.1002/chin.201204158; GalChimia, 2011, issue 19; Organic Chemistry Portal, Organic Chemistry Highlights, May 28, 2012.
  • “A Two-Component Small Molecule System for Activity-Based Detection and Signal Amplification: Application to the Visual Detection of Threshold Levels of Pd(II)”, Baker, M. S.; Phillips, S. T.* J. Am. Chem. Soc. 2011, 133, 5170–5173. Highlighted in: Chemistry & Engineering News.
  • “Fluidic “Timers” for Paper-Based Microfluidic Devices”, Noh, H.; Phillips, S. T.* Anal. Chem. 2010, 82, 8071–8078.  Highlighted in: Chemistry & Engineering News, Philadelphia Inquirer, USA Today, Gizmag Emerging Technology Magazine, Science Magazine: Science Daily News, Technology Daily: Style and Reviews Daily News Magazine, Science Daily, Oil & Gas Industry Today: Paraffin News, Medindia.net, Laboratory Equipment.com, Smart-Grid.tmcnet.com, Justmeans, Internet Chemistry.com, Fluidics: Microfluidics News, Physorg.com, Indiaofs.com, International Hospital, Latest Technology Blog, Lower my Cholesterol.net, Health.gresnews.com, Examiner.com, Health Info Here, Digg.com.
  • “Patterned Plastics that Change Physical Structure in Response to Applied Chemical Signals”, Seo, W.; Phillips, S. T.* J. Am. Chem. Soc. 2010, 132, 9234–9235. Highlighted in: Nature Chemistry, twice in New Scientist (June 28, 2010 and June 30, 2010), European Plastics News, SYNFACTS, JACS Select, Plastics News.com, Green Earth Africa, Platinum Today, Iran Daily, Techmonitor.net, Carbon Capture Report, Chemistry in the News: Exploring Chemistry, Renewable Energy Blog.
  • “Metering the Capillary-Driven Flow of Fluids in Paper-Based Microfluidic Devices”, Noh, H.; Phillips, S. T.* Anal. Chem. 2010, 82, 4181–4187.

Book Chapters

  • Phillips, S. T.*; Lewis G. G.  “Quantitative Point-of-Care (POC) Assays Using Measurements of Time as the Readout: A New Type of Readout for mHealth”, in Methods in Molecular Biology, 1256; Springer: New York, 2015; pp 213–230. (Invited book chapter.)
  • Phillips, S. T.*; Thom, N. K.  “Three-Dimensional, Paper-Based Microfluidic Devices Containing Internal Timers for Running Time-Based Diagnostic Assays”, in Microfluidic Diagnostics, Methods and Protocols; Jenkins, G.; Mansfield, C. D., Eds.; Methods in Molecular Biology 949; Springer: New York, 2013; pp 185–196. (Invited book chapter.)
  • Cloninger, M. J.; Bilgicer, B.; Li, L.; Mangold, S. L.; Phillips, S. T.; Wolfenden, M. L. “Multivalency”, in Supramolecular Chemistry: From Molecules to Nanomaterials; Steed, J. W.; Gale, P. A., Eds.; Wiley, 2012.

Patents

  • Portable Analytic Device and Methods of Use Thereof; Inventors: PHILLIPS S T, LEWIS G G, RITTER D W, BROOKS A; PCT application number 14/949,166, filed Nov. 23, 2015.
  • Qualitative and Quantitative Point-of-Care Assays; Inventors: PHILLIPS S T, LEWIS G G, ROBBINS J S; US patent application 2015005193.
  • Fluidic device; Inventors: PHILLIPS S T, THOM N K, NOH H; Patent Number(s): US2011240151-A1; WO2011123633-A2; WO2011123633-A3.
  • Signal-responsive plastics; Inventors: PHILLIPS S T, SEO W, ROBBINS J, OLAH M, SCHMID K, DILAURO A M; Patent Number(s): WO2012005806-A2; WO2012005806-A3; US2014242623-A1; US8871893-B2.