Jennifer Watkins is a Ph.D. student in the Micron School of Materials Science and Engineering (MSMSE). She is a local Idaho resident who was born and raised in the beautiful Treasure Valley. Growing up in a rural area outside Boise, Jennifer was involved in 4-H and enjoyed the abundance of outdoor activities found all over Idaho. Jennifer was also an avid reader. In fact, she discovered science through reading and aspired to become a medical doctor.
The Path to Materials Science and Engineering
Following high school, Jennifer spent several years in a finance career. She aspired to work in a field where she could make a difference for the environment so she explored learning opportunities at Boise State University. Jennifer met with MSMSE professor and former College of Engineering dean, Amy Moll, during one of her campus visits. “Dr. Moll’s enthusiasm for materials science helped me understand what this degree offers. Her welcoming demeanor really propelled me into the discipline,” Jennifer says as she reflects on the interaction that changed her life.
Jennifer applied for admission to the undergraduate program in materials science and engineering and immersed herself in the discipline. She has been involved in research in the Advanced Materials Lab (AML) since 2014, initially working with Dr. Darryl Butt. Jennifer’s early research involved the characterization and microanalysis of an ancient pigment particle from an Egyptian mummy portrait. She also worked on characterization and analysis to determine the provenance of a human skull that was recovered in rural Idaho, which resulted in her first peer-reviewed publication.
Jennifer graduated cum laude in 2016 with a Bachelor of Science in Materials Science and Engineering and a minor in Physics. She wanted to continue expanding research opportunities so she applied for the Ph.D. in Materials Science and Engineering at Boise State. As a graduate research assistant, Jennifer is conducting research on the synthesis, characterization, and performance testing of accident tolerant fuels for current and advanced nuclear reactors under the direction of Dr. Brian Jaques. In addition, Jennifer worked on a project with NASA involving fabrication of capacitive-based flexible strain gauges. She presented her research at the Wearable Technology Symposium at Johnson Space Center.
Fellowships Create Opportunities
Jennifer was recently one of only thirty-one students nationwide who were awarded a prestigious 3 year, $150,000, Department of Energy Integrated University Program Graduate Fellowship. Fellows participate in internships at various national laboratories, gain hands-on work experience, and report on their research annually. Jennifer is continuing her accident tolerant nuclear fuels research by interning in the Materials and Fuels Complex Fuel Fabrication and Development Department at the Idaho National Laboratory. She was well prepared to succeed thanks to her research experience at Boise State. In her first few weeks, Jennifer assisted with the setup of instruments and facilities to fabricate U3Si2, an accident tolerant nuclear fuel form, which will be inserted into the first lead test rods of its kind for a commercial nuclear reactor. In addition to fabrication and setup, Jennifer is also researching the effects of phase and microstructure on the mechanical properties of U3Si2 fuel pellets. Jennifer is gaining valuable experience at one of the nation’s leading nuclear science and technology laboratories. She is also learning from and collaborating with prominent scientists in the nuclear community.
Opportunities like this often lead to new experiences. Jennifer recently learned that she is the recipient of an Idaho National Laboratory (INL) Graduate Fellowship. The program is a collaboration between INL and various universities to provide mentoring and financial support for outstanding students who are enrolled in a graduate degree program. Fellows conduct research on-site at INL while earning their degree. This opportunity will allow Jennifer to finish her required graduate coursework at Boise State and then transition to INL to perform research, guided by her university and INL technical advisors, during the final years of her Ph.D. program. She plans to continue her work on optimizing synthesis and manufacturing methods for U3Si2 while also exploring pathways to increase the oxidation and water corrosion resistance of U3Si2.
Ready for Success
Jennifer is grateful for the life changing opportunities she continues to encounter in the Micron School of Materials Science and Engineering. “No other engineering discipline exposes you to as much diversity in career and research options as materials science and engineering,” says Jennifer. “The opportunities are unparalleled. Students interested in making important contributions to solving technological challenges should really consider furthering their education in materials science and engineering.” Jennifer’s future career prospects are promising. By gaining research experience early in her academic career, Jennifer is well prepared to succeed in the nuclear industry where she plans to continue researching alternatives to fossil fuels, specifically in nuclear energy.