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Fitting several sets of kinetic data directly to a model based on numerical integration provides the best
method to extract kinetic parameters without relying on the simplifying assumptions required to achieve
analytical solutions of rate equations. However, modern computer programs make it too easy to enter an
overly complex model, and standard error analysis grossly underestimates errors when a system is
underconstrained and fails to reveal the full degree to which multiple parameters are linked through
the complex relationships common in kinetic data. Here we describe the application of confidence con-
tour analysis obtained by measuring the dependence of the sum square error on each pair of parameters
while allowing all remaining parameters to be adjusted in seeking the best fit. The confidence contours
reveal complex relationships between parameters and clearly outline the space over which parameters
can vary (the ‘‘FitSpace”). The utility of the method is illustrated by examples of well-constrained fits
to published data on tryptophan synthase and the kinetics of oligonucleotide binding to a ribozyme. In
contrast, analysis of alanine racemase clearly refutes claims that global analysis of progress curves can
be used to extract the free energy profiles of enzyme-catalyzed reactions.

� 2008 Elsevier Inc. All rights reserved.
Common algorithms for fitting data by nonlinear regression
provide a covariance matrix from which standard errors can be cal-
culated to give an estimate of the confidence intervals on fitted
parameters [1,2]. Like other data fitting programs, KinTek Global
Kinetic Explorer computes standard errors based on these well-
established algorithms for nonlinear regression [3]. However, these
methods fail to reveal the extent to which parameters are seriously
underconstrained when a model is overly complex and when the
relationships between parameters and observable data are indi-
rect, which is a common occurrence with kinetic data. In this arti-
cle, we present methods to overcome the limitations of standard
error analysis by more fully exploring the space over which param-
eters can vary in fitting the data, which we refer to as the ‘‘Fit-
Space,” and we illustrate the method with several examples. We
present a method to provide a more reliable estimate of errors
on fitted parameters based on a threshold in the FitSpace contours.

Modern programs that provide fast simulation of complex mod-
els make it easy to define an overly complex model as the basis for
data fitting and then to extract kinetic constants by finding a fit
that conforms to the data. However, unlike conventional fitting
to analytical functions, it is difficult to describe the relationships
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between individual fitted parameters and elements of the data that
support their definition. For example, in the classical fitting of stea-
dy-state kinetic data on a double reciprocal plot, it is easy to see
that the y intercept defines 1/kcat and the slope defines 1/(kcat/
Km), but visualizing those features that define kcat and Km in a glo-
bal fit to the primary data is less obvious. Moreover, as a model
gets more complex, it becomes more difficult to address the ques-
tion as to whether the derived set of fitted parameters is unique
and well constrained by the data. For example, in a recent nonlin-
ear global regression analysis of full progress curves of the reaction
catalyzed by alanine racemase, data were fit to extract eight rate
constants [4], although we show here that the information content
of the data was sufficient to define only four parameters—kcat and
Km in each direction—and can place only lower limits on any intrin-
sic rate constant. This example illustrates how conventional error
analysis fails by providing false confidence in fitted parameters
that are not well constrained by the data.

Nonlinear regression represents an extension from the mathe-
matically well-established equations for linear regression by pro-
posing that the best fit is defined by the parameter set providing
the minimum sum square error (SSE),1 obtained by summing over
all data points the square of the difference between the observed
1 Abbreviations used: SSE, sum square error; 3D, three-dimensional; 1D, one-

dimensional; 2D, two-dimensional; 4D, four-dimensional.

mailto:kajohnson@mail.utexas.edu
http://www.sciencedirect.com/science/journal/00032697
http://www.elsevier.com/locate/yabio


Algorithm to evaluate multidimensional parameter space / K.A. Johnson et al. / Anal. Biochem. 387 (2009) 30–41 31
data and calculated value predicted by the fitted function. The func-
tion is evaluated iteratively as the parameters are adjusted until a
minimum in the SSE is found with respect to each variable parame-
ter. To evaluate complex models, the fitted function is computed by
numerical integration of rate equations derived from the model
rather than to the analytical solution, but the process of finding
the best fit is still the same [5,6]. This enables multiple parameters
to be fit simultaneously to multiple data sets based on a single ki-
netic model without simplifying assumptions. However, this compu-
tational power compounds the limitations inherent in nonlinear
regression. Standard error values computed from the covariance ma-
trix by nonlinear regression always underestimate the true error, in
part, because the fitting process assumes that all experimental errors
are uncorrelated and normally distributed, which is often not the
case. In general, the distribution of errors can be approximated as
normal when the number of data points is large, but experimental
data often show correlated deviations from the ideal that preclude
this simplification. Moreover, the covariance matrix is not valid (or
does not exist) when the parameters are underconstrained by the
data.

Standard error analysis results from the evaluation of errors in
the dimension of each parameter at the local minimum derived
for all parameters, so that the analysis fails to fully account for
cases where sets of parameters are correlated and can vary system-
atically over a wide range of values. Although analysis of variance
can reveal linear correlation coefficients between pairs of parame-
ters, it fails to reveal more complex relationships and underesti-
mates the full range of parameter space. The observable kinetic
data, in terms of rates and amplitudes of reaction, are complex
functions of multiple rate constants that are not easy to resolve. Er-
ror estimates from nonlinear regression evaluate goodness of fit for
a given parameter only at the local minimum derived for the
remaining parameters and do not adequately address the extent
to which a given parameter is constrained independent of values
assumed for other parameters. For these reasons, it is extremely
difficult to evaluate whether multiple parameters are adequately
constrained by the data.

Various attempts used in the past can be quite misleading. For
example, simply showing that the algorithm always returns the
same results regardless of starting estimates for parameters fails
to provide a rigorous test and reveals more about the method used
to find the local minimum than the uniqueness of the fit. Because
randomly generated starting estimates covering a large range of
values often lead to parameter sets that do not converge on fitting,
a narrower range of values must be used and this necessarily leads
to the same local minimum. Therefore, this analysis does not ad-
dress the important question of whether the model is overly com-
plex. In addition, nonlinear regression algorithms push
unconstrained parameters to values that no longer affect the fitted
curves. More modern approaches based on resampling, such as the
bootstrap method, and Monte Carlo methods can be more reliable
in some circumstances [7–9] but still suffer from producing error
estimates that are overly optimistic because they fail to explore
the larger space over which parameters can vary. For example,
bootstrap methods failed to reject a proposed fit involving 18
parameters [10] that our methods reveal to be seriously undercon-
strained. One needs more than a set of algorithms that produce dif-
ferent tables of confidence intervals, each based on a given set of
simplifying assumptions. Rather, we present a method to reveal
graphically the underlying relationships between parameters and
the extent to which parameters are constrained independent of as-
sumed values for all other parameters. This analysis provides a
more robust method to estimate errors on fitted parameters and
clearly reveals when the parameters are underconstrained.

Our method is based on the brute force computation of confi-
dence contours with no simplifying assumptions regarding their
shape. We have developed an algorithm based on the well-docu-
mented approach to the use of constant v2 intervals as confidence
limits on fitted parameters to explore the space over which param-
eters can vary [3] and to display that information graphically to af-
ford immediate evaluation of how well the parameters are
constrained by the data. This article follows from the preceding
one [11] in which we described a new program for fast dynamic
simulation of kinetic data. Here we use examples introduced in
the accompanying article to illustrate the use of FitSpace Explorer.
A free student version of the software is available at http://
www.kintek-corp.com/kinetic_explorer and includes all of the
examples discussed here as well as detailed instructions.

The method is based on the computation and plotting of three-
dimensional (3D) confidence contours by examining the depen-
dence of the sum square residuals (or SSE) on each pair of param-
eters [1]. We construct confidence contours by evaluating the
dependence of SSE on pairwise combinations of parameters while
allowing all other parameters to be adjusted by nonlinear regres-
sion to achieve the minimum SSE at each point on the contour.
As we show here, standard error analysis fails because of the strong
interdependence between the observable data and all of the fitted
kinetic parameters. To fully explore the space over which all
parameters are allowed to vary in achieving an adequate fit to
the data, we repeat the computation of confidence contours for
all pairs of parameters to construct the FitSpace. This more inten-
sive computation defines the extent to which pairs of parameters
are correlated and individual parameters are constrained by the
data without assumptions regarding the magnitude of any other
parameters.

The confidence contours provide a striking visual indication of
overparameterized models, reveal complex relationships between
parameters when they are not constrained, and provide realistic
limits of error on fitted parameters. In this article, we show the re-
sults of analysis on two previously published models that are ni-
cely constrained by the supporting experimental data and on one
that is not.
Conventions

In reference to reaction schemes, steps are numbered sequen-
tially from left to right and forward rate constants are assigned a
positive step number integer, whereas the reverse rate constants
are assigned a negative integer for the same step number. All sec-
ond-order rate constants (involving the reaction of two species) are
given in units of lM–1 s–1, and all first-order rate constants are re-
ported in units of s–1.
3D confidence contours

As an approximation to evaluating the complex interrelation-
ships among parameters in multidimensional space, we have taken
the approach of constructing 3D confidence contours by pairwise
evaluation of all fitted parameters, as illustrated in Fig. 1. To con-
struct the confidence contour, we systematically vary a given pair
of parameters around the area of their best fit. At each x,y pair of
the tested parameter values, we fit the data by allowing all of the
other parameters to vary in converging to the best fit while holding
the x,y pair of parameters fixed. After convergence to the best fit,
we compute the SSE. By repeating this process for all x,y pairs with-
in a grid, we construct a 3D profile of the SSE as shown in Fig. 1. In
this example, data from tryptophan synthase (see Fig. 1 of the
accompanying article [11]) were fit to a two-step model shown
in Scheme (1) (see below) involving four rate constants and two
scaling factors. To compute the contour in Fig. 1, rate constants
k1 and k�1 were varied systematically across the x,y grid and the
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Fig. 1. Confidence contour example. (A) Two-dimensional view of contour shown in
panel B. (B) Three-dimensional plot of contour derived in globally fitting tryptophan
synthase data to four rate constants and two fluorescence output factors. This figure
shows the dependence of the SSE on two rate constants, k1 and k�1, while varying
all other parameters to achieve the best fit. The z axis displays the overall minimum
SSE divided by the SSE observed at each x,y pair of k1,k�1 values, SSEmin/SSEx,y. The
color coding provides a yellow band at the threshold of a 25% increase in SSE, where
SSEmin/SSEx,y = 0.8. (For interpretation of the reference to color in this figure legend,
the reader is referred to the Web version of this article.)
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SSE was computed after allowing the four remaining parameters to
vary in achieving the best fit. Therefore, this contour evaluates the
extent to which k1 and k�1 are determined by the data and reveals
relationships between these two parameters without any con-
straints imposed by the values of any other parameter. Accord-
ingly, the confidence contour shows the extent to which each of
these constants is constrained by the data.

To normalize the range of variation in SSE, and because peaks
are easier to see than valleys on 3D plots, we compute the recipro-
cal of the normalized SSE as SSEmin/SSEx,y. The z axis spans the
range of 0 to 1, where 1 represents the best overall fit. Fig. 1 shows
a peak in the optimal fitting, defining the best-fit values for k1 and
k�1. Moreover, the 3D contour provides a measurement of the
range over which the parameters k1 and k�1 can vary while still
achieving a good fit. Assessment of the errors in each of the param-
eters can be derived by analysis of the confidence contours relative
to a fixed threshold in the SSEmin/SSEx,y. The maximum upper and
lower limits allowed for each parameter are defined by points on a
fixed threshold in the SSE contour, illustrated by the yellow (or
white) band on the plot (Fig. 1). The error limits attained by this
approach are more realistic and reliable than the conventional er-
ror analysis based on the nonlinear regression covariance matrix,
as discussed below. We are in the process of evaluating several
algorithms that might reliably compute what the threshold should
be based on the number of data points. The current version of the
program allows the user to define a threshold, from which upper
and lower boundaries on each parameter are computed by inspec-
tion of the confidence contours. This method has the advantage
that more realistic error estimates are obtained especially when
the confidence contours are skewed or unbounded, as illustrated
by the examples below.

The following examples illustrate the use of the FitSpace confi-
dence contours to evaluate whether a given model and set of rate
constants are constrained by the data. In addition to providing
more reliable estimates of errors when parameters are well con-
strained by the data, this analysis also reveals when a given model
is overly complex by showing large areas over which parameters
can vary and still achieve an acceptable fit. Eliminating overly com-
plex models is the biggest challenge in multiparameter data fitting,
and this aspect of the FitSpace Explorer calculation provides the
greatest benefit.

Example 1: Tryptophan synthase

As shown in Fig. 1 of the accompanying article [11], the b-reac-
tion catalyzed by tryptophan synthase begins by the reaction of
serine with pyridoxal phosphate to form a quinonoid species
(EQ) that decays by the elimination of water to form a reactive
aminoacrylate (E�A) according to the following pathway. The for-
mation and decay of EQ can be monitored by fluorescence, and
analysis of published data by conventional fitting led to the follow-
ing model [12]:

Eþ S ��������! ��������0:135 lM�1 s�1

20 s�1
EQ ����! ����45 s�1

10 s�1
E � A

Fluorescence ¼ a�½EQ � þ b
: ðScheme 1Þ

Synthetic data were generated according to this model with added
noise (normally distributed) to mimic the published results and
were then fit globally based on simulation, and contours were con-
structed to get the results shown in Fig. 2A and Table 1A. Standard
error estimates for each parameter were obtained by nonlinear
regression, whereas the upper and lower limits on the fitted param-
eters were obtained from the 25% threshold of the confidence con-
tour (Table 1A). In this example, nonlinear regression provides
unrealistically low error estimates on the order of 1% of the value
of each parameter (range of 0.5–1.9%). In contrast, error limits from
the confidence contour are approximately 10% (range of 4–18%). For
each parameter, the error limits from the confidence contour anal-
ysis were approximately 10-fold greater than the values obtained
from nonlinear regression. In this case, where the fitted parameters
are well constrained by the data and there are a large number of
data points (500 per trace), standard nonlinear regression predicts
very small errors in fitted parameters because these methods as-
sume that the best fit is necessarily at the center of the distribution
of errors in the data along the each segment of each trace; that is,
the errors are independent and identically distributed. Accordingly,
an SSE threshold of approximately 1% could be used to estimate er-
rors in the fitted parameters. This is a valid assumption for our syn-
thetic data. However, this is not always the case for experimental
data where the data are not necessarily independently and identi-
cally distributed.

Another way to assess whether the error limits on parameters
are realistic is to overlay all possible curves derived from the var-
ious combinations of fitted parameters. Fig. 3 shows the results of
such graphical analysis for the tryptophan synthase data based on
a 25% threshold in the confidence contours. Sets of parameters de-
rived from the 25% boundary region of a good fit were used to gen-
erate the time courses of the reaction, and all curves were overlaid
on the data and the best-fit line. In this figure, all possible sets of
acceptable fitted parameters yield curves that lie within the gray



Fig. 2. Confidence contours for tryptophan synthase data fitting. (A) Confidence
contours for the global fit to four rate constants and two output factors, showing all
six pairwise combinations of the four rate constants. The results were derived by
globally fitting the data collected at four serine concentrations (see Fig. 1 of the
accompanying article [11]). (B) Confidence contours obtained by fitting four rate
constants and two output factors to only one trace obtained at a concentration of
500 lM serine.

Table 1
Error analysis on tryptophan synthase parameters.

k+1 k�1 k+2 k�2 a b

A. Analysis of data with four traces
Best fit 0.135 19.9 45.0 10.0 7.32 3.00
SE 0.0013 0.37 0.46 0.072 0.046 0.014
% SE 1.0 1.9 1.0 0.7 0.6 0.5
Lower 0.122 16.3 40.3 9.27 6.9 2.87
Upper 0.149 23.8 50.7 10.9 7.83 3.13
% Range 10.0 18.8 11.6 8.2 6.4 4.3

B. Analysis of data with only one trace
Best fit 0.135 19.5 45.0 10.0 7.33 3.00
SE 0.32 28.5 118 0.35 17.6 0.048
% SE 237.0 146.2 262.2 3.5 240.1 1.6
Lower 0.066 <1e-5 24.0 9.1 4.43 2.78
Upper 0.231 29.1 108 11.1 15.7 3.19
% Range 61.1 � 93.3 10.0 76.9 6.8

Note. Artificial data were generated from the model for the tryptophan synthase
reaction (Scheme 1) with added Gaussian noise to mimic the original data [12] and
then were subjected to data fitting and error analysis. The best fit and standard
error were derived by nonlinear regression based on numerical integration of the
rate equations as described in the text. The percentage standard error (% SE) was
derived from the ratio of the SE and the best fit value. Lower and upper limits were
derived from the threshold of SSEmin/SSEx,y = 0.8 in the confidence contours, and the
percentage range (% range) was computed as (upper – lower) / (2�best fit). The
asterisk (�) is used to indicate when there are no upper or lower limits on the
parameters and percentage error would be meaningless.
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Fig. 3. Range of fitted parameters. Tryptophan synthase data were fitted globally,
and sets of parameters producing a fit within 25% of the overall minimum SSE were
used to generate a family of curves that were overlaid to produce the gray band. The
best-fit curves are shown by the thin dark line. The inset shows a magnification of
the area in the box.
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boundary area. This visual representation of the data supports the
conservative estimation of errors based on a 25% threshold in the
SSE by showing that all possible fitted curves lay within the span
of the noise in the data. More important, they lie within the span
of correlated deviations typical of real data. Based on our experi-
ence in fitting real data, an SSE threshold in the range of 10 to
25% realistically evaluates allowable variations in fitted parame-
ters based on visual examination of the fitted curves. However,
as discussed in more detail below, there is no statistical basis for
setting the threshold to this arbitrary value.

The most important conclusion from the analysis of the trypto-
phan synthase data is that the six-parameter fit is well constrained
by the data. That is, the information content of the data is sufficient
to define all six parameters (four rate constants and two scaling
factors). As one test of our confidence contour analysis, we consid-
ered the results of fitting a single trace rather than the family of
curves collected at four different serine concentrations. The results
of this analysis are shown in Fig. 2B, and error analysis for this fit is
shown in Table 1B. The pattern of confidence contours is clearly
different, revealing that not all parameters are well constrained.
In particular, it should be noted that there is no lower limit on
k�1. In this case, nonlinear regression returns standard error values
that are larger than the value for each of the four rate constants ex-
cept k�2, so in this case the standard nonlinear regression algo-
rithm provides an indication that this fit is not well defined but
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does not identify the most problematic parameter. However, anal-
ysis of the confidence contours provides more informative data by
placing more realistic upper and lower limits on the fitted param-
eters and clearly showing that k�1 has no lower limit within the
range that was searched (down to 1e-5), but a reasonable upper
limit of 29 s–1 was identified. Moreover, estimates of the remaining
three constants can be obtained, but with 60 to 90% allowable var-
iation in each fitted parameter.

The confidence contours reveal complex relationships between
parameters. For example, the best fit over the pair of constants
k+1,k+2 shows a curved dependence. Note that the discontinuous
points on the figure result from our sampling on a grid, but the
function is continuous and shows a curved ridge relating the
best-fit parameter pairs. The relationship between k+1 and k+2

can be fit to a function where the product k+1�k+2 is a constant. This
constraint can be understood as relating to the net forward rate of
the two-step reaction; that is, the data constrain the product
k+1�k+2 more tightly than either parameter individually.

Underlying the changes in rate constants are corresponding
variations in the fluorescence output factors, which are also un-
known parameters in fitting the data. By allowing the output fac-
tors to vary, a larger range of variability is seen in the rate
constants. This is illustrated in Fig. 4, showing the results of every
set of parameters giving a fit within 0.1% of the minimum SSE in
fitting only one trace of the tryptophan synthase data. These
parameter sets produce indistinguishable curves for the time
course of reaction because the SSE is invariant (Fig. 4, upper panel).
The value for each parameter is plotted as a function of variation in
k+1 (note that k2 is on a different scale on the right). This analysis
shows the correlations between various parameters, similarly to
the patterns shown in Fig. 2B, but includes variation in the output
factors. For example, as k+1 is increased, both k2 and the fluores-
cence scaling factor a decrease in a constant ratio to maintain
the shape of the transient. Meanwhile, k�1 initially increases and
then decreases, with a corresponding change in the net equilibrium
constant. The peak in the value for k�1 can be understood in terms
of the intricacies of fitting a double exponential function where the
rate of substrate binding dominates the slow phase at low values of
k+1
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Fig. 4. Parameter variation for a poorly constrained fit. Data from the FitSpace
search obtained by fitting only one trace from the tryptophan synthase data (as in
Fig. 2B) were sorted to select all parameter sets that resulted in an SSE value within
0.1% of the minimum. The values of all parameters were then plotted as a function
of the value of k+1. The upper panel shows the SSE value obtained from each
parameter set. Note that k�1 is plotted on a different scale (right-hand y axis).
k+1 but dominates the fast phase at high values of k+1. The impor-
tant point, germane to this discussion, is that one trace obtained at
one substrate concentration is insufficient to define all six param-
eters, and this is readily revealed by the contour analysis. Such
uncertainty is avoided either by knowing the absolute values for
the fluorescence scaling factors or by performing the experiment
at multiple concentrations. Fitting the data over a series of concen-
trations provides sufficient information to establish the scaling fac-
tors and, therefore, to uniquely determine the rates. Alternatively,
if the fluorescence scaling factors were known with certainty, then
the four rate constants could be determined from the transient ob-
served at a single substrate concentration, although with greater
error estimates than afforded by the concentration series. This
can be readily revealed by locking the scaling factors at a preset va-
lue and then recomputing the confidence contours (not shown).

In performing the FitSpace computation, the program first ex-
plores the space over which parameters can vary and then plots
a rendition of Fig. 4 in which all parameters (including output fac-
tors) are normalized by dividing by their largest values. This puts
all parameters on the same scale and allows immediate feedback
regarding the extent to which parameters can vary in achieving a
good fit. This is especially useful in situations where the parame-
ters are not well constrained because it is immediately obvious
from this visual display. A well-constrained fit will show all param-
eters clustered close to their normalized best-fit value. For exam-
ple, when this parameter correlation analysis is applied to the
full set of four traces for tryptophan synthase (as in Fig. 2A), all
parameters cluster within 0.8 of their best-fit value.

In the current version of the software, we do not compute a full
3D contour for each output factor relative to each rate constant but
rather rely on a modified rendition of Fig. 4 to reveal the underly-
ing relationships. In a future release of the software, we will in-
clude an option to include output factors in the full FitSpace
confidence contour analysis.

Example 2: Ribozyme–oligonucleotide binding

Analysis of the data obtained from the binding of a fluorescently
labeled oligonucleotide to a ribozyme [13] also showed that the ki-
netic parameters and fluorescence scaling factors are well con-
strained by the data, but this example illustrates the need for an
additional experiment to define the rate constants governing sub-
strate dissociation. The family of curves resulting from the concen-
tration dependence of the binding reaction and the competition
experiment to measure the net dissociation rate (see Fig. 2 of the
accompanying article [11]) were fit simultaneously to the follow-
ing model:

Eþ S ��������! ��������3:9 lM�1 s�1

0:5 s�1
ES ����! ����2:5 s�1

0:02 s�1
FS

Fluorescence ¼ a�½ES� þ b�½FS�
: ðScheme 2Þ

The FitSpace confidence contour analysis for these data is shown in
Fig. 5A, and errors are summarized in Table 2A. Nonlinear regres-
sion returns errors ranging from 0.03 to 2% of the parameter values.
In contrast, confidence contour analysis returns error limits ranging
from 0.6 to 50% and reveals that the largest errors are in the two re-
verse rate constants k�1 and k�2, whereas both forward rate con-
stants were well defined. Again, the confidence contour analysis
provides a more realistic assessment of the errors in attempting
to extract all four rate constants and two scaling factors from the
data. It is also interesting to note that the optimal fits for the two
reverse rate constants conform to a parabolic function, indicating
that the data more tightly constrain the product k�1�k�2 than either
parameter individually. The net observed dissociation rate mea-
sured by the second experiment (see Fig. 2B of the accompanying



Fig. 5. Confidence contours for fitting ribozyme binding data. (A) Confidence
contours were derived in globally fitting both binding and dissociation kinetic data
simultaneously to the two-step model with four rate constants and one fluores-
cence output factor (see Figs. 2A and 2B of the accompanying article [11]). (B)
Confidence contours obtained in fitting only the binding data (see Fig. 2A of the
accompanying article [11]).

Table 2
Error analysis on ribozyme parameters.

k+1 k�1 k+2 k�2 b

A. Simultaneous analysis of data from two experiments
Best fit 3.90 0.50 2.5 0.02 1.57
SE 0.01 0.01 0.01 0.0004 0.0005
% SE 0.3 2.0 0.4 2.0 0.03
Lower 3.7 0.28 2.31 0.014 1.56
Upper 4.12 0.79 2.76 0.033 1.58
% Range 5.4 50.2 9.0 4.6 0.6

B. Analysis of only the binding rate data
Best fit 3.90 0.50 2.5 0.008 1.57
SE 0.01 0.01 0.01 0.019 0.0009
% SE 0.3 2.0 0.4 235 0.06
Lower 3.71 0.19 1.4 <1 e-9 1.56
Upper 4.12 0.76 2.7 0.91 1.91
% Range 5.3 54.2 25.0 � 11.1

Note. Artificial data were generated from the model for the ribozyme binding
reaction with added Gaussian noise to mimic the original data [13] and then were
subjected to data fitting and error analysis. Errors were computed as described in
Table 1. The asterisk (�) is used to indicate when there are no lower limits on the
parameters and percentage error would be meaningless.
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article [11]) can be approximated by the function kobs = k�1�k�2 / (k2

+ k�2), explaining the constraint on the product k�1�k�2 provided by
these data [13].

Even more telling are the results of the analysis of only the
binding rate data (eliminating the dissociation rate data obtained
in the competition experiment), as shown in Fig. 5B and summa-
rized Table 2B. In this case, nonlinear regression returns errors
on 0.3 to 235% of the fitted parameters and shows that k�2 is not
well defined. The confidence contours reveal that k�2 has no lower
boundary (<1e-9) but has a defined upper limit of 0.9. Errors on the
other parameters range from 5 to 54%, placing more reasonable
limits of error on these parameters.
The most important conclusion from the analysis of the ribo-
zyme–oligonucleotide binding data is that the competition exper-
iment is required to provide a reliable estimate of the dissociation
rate constant (k�2). That conclusion was already obtained by care-
ful analysis based on conventional data fitting [13], but the current
analysis is easier and more comprehensive and also provides a
more realistic assessment of errors. It should be noted that the data
on tryptophan synthase and the ribozyme are quite similar in that
they both show biphasic fluorescence changes defining a two-step
binding reaction, but there is one very important difference. In the
case of tryptophan synthase, the reverse rate constants (k�1 and
k�2) were comparable to the forward isomerization rate k+2; there-
fore, they had a significant effect on the binding kinetics and so
could be resolved from analysis of the binding kinetic data alone.
In contrast, the reverse rate constant k�2 in the ribozyme binding
reaction was too small to noticeably affect the forward binding
kinetics. In conventional data analysis, this distinction is revealed
by fitting the data to a double exponential and then attempting
to resolve the reverse rate by extrapolation of the observed rate
to zero concentration (see Fig. 1B of the accompanying article
[11]). In globally fitting a model directly to data, the relationships
between the data and individual parameters are more difficult to
see but can be clearly revealed by inspection of the confidence
contours.

Example 3: Alanine racemase

Confidence contour analysis is especially critical in estimating
the extent to which the fitted parameters are constrained by the
data. When a model is not well constrained, nonlinear regression
can be extremely misleading, as illustrated by this final example.
In previously published studies, progress curves for the reaction
catalyzed by alanine racemase were fit globally to define the free
energy profile for the reaction based on a four-step reaction path-
way, including formation and breakdown of an enzyme-bound
intermediate to get the rate constants shown in Scheme (3) [4]:
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However, because the data are limited to steady-state turnover as
the reaction approaches equilibrium, the information content of
the data is insufficient to define the rates of reaction at the active
site. This can be illustrated in several ways. First, it should be noted
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that the rates of breakdown of the enzyme-bound intermediate are
five to six orders of magnitude faster than the rates of formation of
the intermediate in each direction. Thus, the enzyme-bound inter-
mediate is not detectable unless one has an assay sensitive enough
to measure one part in a million enzyme sites. On the time scale and
sensitivity of the experiment, the intermediate is not detectable.
Therefore, in fitting the data globally, rate constants k�2 and k3 were
unconstrained by the data and assigned large values. Our attempts
to compute the confidence contours with all eight parameters
showed that the system is so poorly constrained that no upper lim-
its could be found for any parameter. Moreover, dynamic simula-
tion performed by linking k3 and k�2 in a constant ratio shows
that they can be reduced by five orders of magnitude before
changes in the shape of the curves can be detected.

As a simple illustration of the difficulties with this model, we
constructed a limited confidence contour by varying only k�2 and
k3 while holding all other constants fixed at their published values.
Fig. 6 shows the variation in the SSE as k�2 was varied systemati-
cally while maintaining k3/k�2 in a constant ratio (k3/k�2 = 3.67).
Deviations away from this ratio throw off the net equilibrium con-
stant for the reaction and result in large increases in SSE, but so
long as the constant ratio is maintained, the data can be fit with
any pair of values approaching infinity. That is, there is no upper
boundary on either parameter; however, the data do set a lower
boundary on these two constants dependent on satisfying the va-
lue of kcat in each direction. It should also be noted that the lower
limits on k�2 and k3 are dependent on the values for all other first-
order rate constants in the pathway. In the limit where k2 and k4

are large, k3 = kcat in the forward direction, whereas in the limit
where k–3 and k�1 are large, k�2 = kcat in the reverse direction. An-
other possible fit is illustrated in the second plot in Fig. 6 (dashed
line), where k�2 and k3 are varied in the same constant ratio but
with a different set of the remaining parameters. Here a local min-
imum is observed because of the choice of the remaining parame-
ters (see figure legend). Simply stated, there are too many
parameters to achieve a meaningful fit other than to extract values
for kcat and kcat/Km in each direction. The model is too complex.
Nonetheless, nonlinear regression returns relatively small error
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Fig. 6. Error analysis in varying only two rate constants for alanine racemase data.
The alanine racemase data were modeled according to the published model with a
four-step mechanism with eight rate constants. Six rate constants were held fixed
at their published values, whereas k�2 and k3 were varied while maintaining a
constant ratio of k3/k�2 = 3.67, and at each value the SSE was calculated (solid blue
line). The y axis shows the SSE normalized by dividing by the minimum value.
Values of k�2 are given in units of s–1/1000. The process was repeated for another
set of parameters revealing another local minimum in SSE obtained when
k1 = 7.41 lM–1 s–1, k�1 = 36,000 s–1, k2 = 2980 s–1, k�2 and k3 varied in constant
ratio, k–3 = 5760 s–1, k4 = 9230 s–1, and k–4 = 3.62 lM–1 s–1 (red dashed line). This
figure shows only two of an infinite number of sets of parameters that afford the
same minimum SSE. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
estimates on each of the eight parameters (2.6–8% reported [4])
even though none of the parameters is well constrained by the
data. This is explored in more depth by working to fit the data to
a simpler model.

As one example, synthetic data generated from the published
model and rate constants (Scheme 3) could be fit to the following
simplified model:
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In this model, by assuming diffusion-limited substrate binding
(100 lM–1 s–1), we are essentially fitting the data set only to derive
kcat and Km in each direction, for example, kcat = k2 = 1580 s–1 and
Km,L = 3880 lM in the forward direction. The confidence contours
for this fit are given in Fig. 7A, showing that each parameter is well
constrained because we are fitting only four parameters to extract
four meaningful kinetic constants. The information content of these
steady-state data is limited to deriving only steady-state kinetic
parameters. The concentration dependence of the rate defines
kcat/Km, and the extrapolated maximum rate defines kcat in each
direction to provide four known parameters sufficient to constrain
four constants but not six. One might consider that the net equilib-
rium constant provides a fifth known parameter, but that informa-
tion is redundant once kcat/Km in each direction is established
because the net equilibrium constant is equal to the ratio of kcat/
Km in the forward direction divided by that in the reverse direction.

As another example, the data can also be fit to the following rate
constants, giving the same values for kcat and kcat/Km as derived
from the more complex four-step model:
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To assess the extent to which all six rate constants are constrained
by the data, we constructed a confidence contour for fitting data to
the complete three-step model:
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Synthetic data were generated from the published rate constants for
the four-step model (Scheme 3) and then subjected to data fitting to
the three-step model to generate the confidence contours shown in
Fig. 7B. For each parameter, the contour analysis indicates a lower
limit for each parameter, which is difficult to see on each graph at
this magnification, but no upper limit, as summarized in Table 3B.
Interestingly, the lower limits set on k2 and k3 are approximately
equal to kcat = 1570 s–1 in the forward direction. Correspondingly,
the lower limits set on k�1 and k�2 are approximately equal to
kcat = 980 s–1 in the reverse direction. The lower limits for the sec-
ond-order rate constants for substrate binding (k1 and k–3) are
slightly larger than kcat/Km = 0.4 lM–1 s–1 in each direction. This is
because the rates of substrate release must be comparable to the
forward net reaction rate, and therefore, kinetic partitioning to re-
lease bound substrate is significant. Note that kcat/Km is defined
by the second-order rate constant for substrate binding times the
probability that the bound substrate continues forward to be re-
leased as product. Thus, the global fitting sets a lower limit on k1

that is greater than kcat/Km by a factor equal to the minimal kinetic
partitioning of bound substrate sufficient to account for its release
in the reverse rate.

The confidence contour analysis also reveals two other interest-
ing limits on the magnitude of individual kinetic parameters, as
shown in Fig. 8. The pattern of all possible values relating k�1

and k+1 is complex. First, the contour establishes lower limits for
each parameter at k�1 P 980 s–1 and k+1 P 0.64 lM–1 s–1 (Table
3B). Beyond those limits, any values for k�1 and k+1 are allowed
so long as the ratio of k�1/k+1 is greater than the Km,L for the



Fig. 7. Confidence contour in fitting alanine racemase data to a three-step model.
(A) The alanine racemase data, generated from the four-step model with published
rate constants, was fit to a three-step model with only four constants varied during
the fitting process to derive this confidence contour. The rate constants for binding,
k+1 = 100 lM–1 s–1 and k–3 = 100 lM–1 s–1, were held fixed while the remaining
constants governing chemistry and product release in each direction were allowed
to vary. The shape of these contours depends on the arbitrary choices for k+1 and
k–3. (B) These confidence contours were derived by fitting the alanine racemase data
to a three-step model while varying all six rate constants. Note that in both panels,
the rates are given in thousands; that is, k�1 ranges from 1420 to 1810 s–1 in panel
A, whereas it ranges from 950 to more than 33,400 s–1 in panel B.

Table 3
Error analysis on racemase parameters.

k+1 k�1 k+2 k�2 k+3 k–3

A. Fitting data to only four constants
Best fit (100) 387900 1582 990 245608 (100)
SE – 2870 4.6 1.7 1550 –
% SE – 0.7 0.3 0.2 0.6 –
Lower – 323000 1490 949 208000 –
Upper – 464000 1790 1030 288000 –
% Range – 18 9 4 16 –

B. Fitting data to six constants
Best fit 1.32 5200 3206 1969 4977 2.02
SE 0.017 120 57 26 118 0.035
% SE 1.3 2.3 1.8 1.3 2.4 1.7
Lower 0.642 982 1480 1010 1580 1.02
Upper > 21.4 >7e5 >3e7 >8e6 >1e6 >368
% Range � � � � � �

Note. Artificial data were generated from the model for the alanine reaction
(Scheme 3) with added noise to mimic the original data [4] and then were subjected
to data fitting and error analysis. Errors were computed as described in Table 1. The
asterisk (�) is used to indicate when there are no upper limits on the parameters
and percentage error would be meaningless.

1

Fig. 8. Complex relationships in confidence contours. (A) A close-up view of the
confidence contour of k�1 versus k+1 from Fig. 7B. The white line is the curve
showing the fit given by the open circles in panel B. (B) Analysis of the relationships
among k�1, k�2, and k+1. The alanine racemase data were fit to the three-step model
with all six rate constants but while systematically varying k+1. Each set of points on
this curve represents a fit that was achieved yielding an SSE within 1% of the
minimum and indistinguishable from the best overall fit. Only the dependences of
k�1 and k�2 on the fixed value of k+1 are shown. Other rate constants did not show a
uniform trend. Units on the y axis are s–1, whereas k+1 is shown in units of lM–1 s–1.
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substrate, as defined by the sharp diagonal boundary. Thus, the
data place a lower limit on the Kd for substrate binding at Kd,L P
Km,L. Including a reversible internal equilibrium into the model al-
lows that Kd can be greater than Km. In the current case, the
requirement to fit both forward and reverse reactions sets only a
lower limit on the Kd for substrate binding that must be greater
than Km. The same is true for the reverse reaction, as revealed
by the confidence contour relating k–3 and k3 and showing that
k3/k–3 P Km,D.
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Fig. 9. Effect of parameter search dimension on observed contour. Here the
confidence contours are computed with differing numbers of variable parameters
for two cases. In panels A to D, the formation of the E�I intermediate is rate-limiting
(Scheme 7), whereas in panels E to H, the breakdown of the E�I intermediate is rate-
limiting (Scheme 8). In the first row (A,E), only k�2 is varied in seeking the
minimum SSE. The second row (B,F) shows a standard two-parameter search in
which both k�2 and k3 are varied. The third row (C,G) shows a four-parameter
search in which k3 and k�2 are varied systematically while k2 and k–3 are also
allowed to be adjusted in seeking the minimum SSE. The fourth row (D,H) shows a
six-parameter search in which k3 and k�2 are varied systematically while k2, k–3,
k�1, and k4 are also allowed to be adjusted in seeking the minimum SSE. In each
three-dimensional plot, the contours are colored as in Fig. 7 and the boundary at 20
to 25% increase in SSE is given by the yellow band surrounding the red center. In the
gray scale rendition, the center is dark surrounded by a light band. Panels C, D, and
H are all red with the exception of a thin band defining a lower limit. The numbers
on the axes define the lower and upper extents of each graph. All rate constants are
in units of s–1. Note that the range for the x axis is identical in panels E to H but vary
widely in panels A to D. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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Another pair of complex relationships is revealed between k+1

and k�2 and between k–3 and k2. The confidence contour of k�2 ver-
sus k+1 shows only a narrow range of acceptable combinations of
these two parameters. As the lower limit of k1 is approached, the
values of k�2 can be quite large, but as k1 increases, k�2 approaches
its limit set by kcat in the reverse direction. This relationship is not
immediately obvious because it results from fitting the forward
and reverse data simultaneously. Above the minimal threshold,
as k1 increases, k�1 increases in a constant ratio defined by K1.
However, once k�1 is greater than kcat in the reverse direction,
k�2 determines the value for kcat,rev. A similar analysis applies to
understanding the relationship between k–3 and k2, where as k–3

and k3 increase in constant proportion, k2 approaches the limit
set by kcat,for. Of course, this careful analysis of the confidence con-
tours is useful only in setting limits on parameters, which in this
case are not well constrained by the data.

This analysis is presented only to show that the confidence con-
tours can be understood even when the relationships are complex.
In running the computer program, an initial exploration of the
space over which parameters can vary reveals the extent to which
parameters are ill constrained, so that the time-consuming full Fit-
Space contour calculation can be stopped. Moreover, the lower lim-
its set on parameters are reasonable based on an understanding of
the reaction kinetics and the data.

Our analysis shows that the synthetic idealized data do not sup-
port reliable estimates for the eight rate constants of the four-step
model as claimed in the original publications. Michael Toney
kindly provided his original data, which included experiments at
several enzyme concentrations as well as various substrate con-
centrations. Analysis of the original data yielded identical conclu-
sions; one cannot extract free energy profiles from global fitting
of progress curve kinetics. Progress curves are essentially steady-
state data allowing the reaction to run to completion, and as such
they afford definition of only two parameters in each direction of
the reaction: kcat and Km. Our analysis shows unequivocally that
one cannot derive estimates of eight parameters by global analysis
of full progress curves of enzyme-catalyzed reactions, and the free
energy profiles cannot be obtained from these data [4]. This error
was compounded in a subsequent study in which 18 parameters
were fit to data collected using deuterated substrates in attempts
to extract hydrogen kinetic isotope effects [10]. This extreme over-
parameterization of data does not hold up to scrutiny; rather, only
the effects of the deuterium substitution on kcat and kcat/Km can be
defined from these data. It is hoped that our new algorithm will
help to prevent such errors in the future.

When and why standard methods of error analysis fail

Methods commonly employed to estimate errors on fitted
parameters examine the dependence of the SSE in only one dimen-
sion, that of the parameter in question. However, the extent to
which a given parameter is allowed to vary is constrained by the
values chosen for other fitted parameters; therefore, the real error
in the fitted parameter is greatly underestimated. This is illustrated
in Fig. 9, using the fitting of the alanine racemase data as an exam-
ple with the rate constants shown in Schemes (7) and (8). We be-
gin with the case where the formation of the intermediate is rate-
limiting according to the rate constants suggested previously [4]
but with k3 and k�2 reduced somewhat in attempts to observe
greater effects of these parameters on the fit:
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The one-dimensional search for the best fit for the parameter k�2 is
shown in Fig. 9A, indicating a tight distribution that suggests very
little error on the rate. A similar effect is seen in a one-dimensional
(1D) search involving k3 (not shown) and with rate constants three
to four orders of magnitude lower than published [4]. This 1D
search forms the basis for the low standard error estimates on each



Algorithm to evaluate multidimensional parameter space / K.A. Johnson et al. / Anal. Biochem. 387 (2009) 30–41 39
individual parameter (Table 3). However, a two-dimensional (2D)
search (Fig. 9B) reveals the linear covariation between k3 and k�2

and shows that any value above a lower threshold provides a good
fit so long as the ratio of k3/k�2 is constant. Analysis of the covari-
ance matrix can reveal that k3 and k�2 are correlated and warn
the user of a possible problem, but the true magnitude of the prob-
lem is underestimated. Moreover, as the fitting program recognizes
the covariation, the values of k3 and k�2 tend to increase in a con-
stant ratio during successive rounds of fitting until further increases
no longer lead to reductions in SSE. Thus, the rate constants are
pushed to a high value with no constraints, but the reported errors
are small based on the 1D error analysis. This explains why the
regression analysis returned such large values for k3 and k�2 [4].
However, even the ratio of k3/k�2 is not known with certainty,
and Fig. 9B is misleading because the allowed values for k3 and
k�2 are constrained by the values chosen for other rate constants
in the pathway. This is revealed by the four-dimensional (4D)
parameter search shown in Fig. 9C, where k3 and k�2 are varied sys-
tematically but k2 and k–3 are also allowed to be adjusted in seeking
the minimum SSE (all other rate constants are held fixed). In this
case, one can see that above a lower limit there are no restrictions
k1;2 ¼
ðk1½S� þ k�1 þ k2 þ k�2Þ �
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on the individual values of k3 and k�2. They are simply not con-
strained by the data. A six-parameter search continues this trend
(Fig. 9D).

A different pattern, but with the same conclusion, is obtained if
one considers the case where the breakdown of the intermediate is
rate-limiting according to Scheme (8) and illustrated in Figs. 9E–H:
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Again, a 1D search of parameter k�2 (Fig. 9E) or k3 (not shown) sug-
gests a well-constrained parameter with a steep change in SSE as
the parameter is changed from its best-fit value, and nonlinear
regression returns an unrealistically low standard error. A 2D
parameter search (Fig. 9F) reveals covariation between k3 and k�2,
but unlike in Fig. 9B, both parameters show an upper boundary
and a lower boundary. These boundaries exist only because of con-
straints imposed by values assumed for other parameters. Fig. 9G
shows the results of the four-parameter contour analysis in which
k3 and k�2 are varied systematically, while k2 and k–3 are also al-
lowed to be adjusted in seeking the minimum SSE. Note that in this
case the range allowed for variation in k3 and k�2 is larger, but it is
still constrained by the limitations imposed by other rate constants
in the pathway that are held fixed. When constraints imposed on
k�1 and k4 are lifted, the full range of allowed variation in k3 and
k�2 is revealed in the six-parameter search (Fig. 9H).

What is clear from this analysis is that Spies and coworkers
[4,10] assumed that the formation of the enzyme-bound interme-
diate was rate-limiting, and this assumption placed their choice of
rate constants into a different domain than if they had assumed
that the breakdown of the intermediate was rate-limiting in net
product formation. However, many solutions exist in fitting their
data. Their steady-state data provide insufficient information to
define the rates of formation and decay of the intermediate at
the active site. Thus, using ‘‘random” variation of starting estimates
for nonlinear regression failed because the range of sampling was
too small and the systematic relationships among parameters were
underappreciated. Standard statistical analysis involving F tests or
bootstrap methods also failed for similar reasons [10] because they
are based on examination of the SSE in the dimension of each
parameter while holding other parameters fixed at the values giv-
ing a local minimum. The standard search algorithms simply fail to
look over a sufficiently wide range of parameter space to reveal the
complex interdependence of kinetic parameters and observable
data. Moreover, when the system is underconstrained, the covari-
ance matrix cannot be reliably calculated because of division by
terms close to zero.

In most instances, essentially every observable feature of ki-
netic data is a function of nearly all kinetic parameters. Consider
again the data obtained using tryptophan synthase (Fig. 1 of
[11]). The time dependence of the reaction can be fit to a double
exponential function, providing two amplitudes, two rates, a
starting value, and an endpoint of the fluorescence at each con-
centration. The substrate concentration dependence of the rates
and amplitudes was sufficient to constrain a six-parameter fit.
However, it must be noted that all observable features of the
data (rates and amplitudes of reaction) are a function of all four
rate constants. Analytical solution of the rate equations reveals
that the two rates are defined by the roots of the quadratic
equation,
and the amplitudes are a function of the relative rates plus the
scaling factors. Thus, in fitting kinetic data, no single rate con-
stant can be obtained without allowance for the effects of all
other rate constants on the magnitude of the observed rate.
However, these relationships are revealed by the shape of the
SSE confidence contour. The FitSpace algorithm resolves the
interdependence of kinetic parameters by searching for the ex-
tremes allowed for each parameter individually while consider-
ing all possible combinations for all other parameters. The user
can control the range over which the parameter search is con-
ducted surrounding a local minimum by setting thresholds in
SSE and setting limits on the magnitude of each parameter var-
iation. Moreover, dynamic simulation allows a rapid manual
search through parameter space to search for alternate local
minima.
Setting the threshold for error analysis

Estimation of the errors on fitted parameters is a complex prob-
lem. Linear or nonlinear regression analysis underestimates errors
because it assumes that all data are independently and identically
distributed and it fails to account for all sources of error such as
those arising from variable concentrations of reagents in the exper-
iment. More important, standard analysis of variance fails to ac-
count for complex relationships between sets of fitted
parameters. Thus, when reporting standard error based on regres-
sion analysis, one must always qualify the results by noting that
the reported error is a minimum estimate. In spite of being gener-
ally recognized as an underestimate, the reporting of standard er-
ror on fitted parameters has become a required and accepted
component in publishing scientific data. The results presented here
show that even when parameters are well constrained by the data,
such as in the case of the tryptophan synthase data, algorithms
commonly employed to compute standard error underestimate
the allowable range on the six parameters that produce acceptable
fits. By examining the dependence of the SSE on parameters indi-
vidually, a very steep dependence of SSE on each parameter leads
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to a small standard error. However, by allowing all of the remain-
ing parameters to float while inspecting the range over which a gi-
ven pair of parameters can vary in achieving an optimal fit, the
confidence contour analysis provides a more realistic assessment
of the constraints on each parameter. This effect is seen in each
of the examples shown but most dramatically reveals when the fit-
ted parameters are underconstrained.

We propose that setting parameter errors based on a threshold
in the SSE provides the most realistic estimate of the range over
which parameters can vary while still achieving an acceptable fit.
It is well accepted that confidence limits on parameters can be de-
rived from a threshold in the SSE. For example a common expres-
sion for setting the threshold is based on the F distribution [1,2]:

SSElimits

SSEmin
¼ 1þ p

n� p
Fa

p;n�p; ð1Þ

where p is the number of parameters, n is the number of points, and
a defines the (1 – a)�100% confidence interval and the F distribu-
tion,Fa

p;n�p, is computed for p and n – p degrees of freedom. Although
Eq. (1) justifies the use of a fixed threshold in the confidence con-
tours, the value of the computed threshold underestimates errors
on fitted parameters because it does not fully account for situations
where data are not independently and identically distributed or
where the parameters are seriously underconstrained. When the
system is underconstrained, higher order terms in the SSE expan-
sion are neglected, but they dominate the shape of the confidence
contours. When the system is well constrained, Eq. (1) underesti-
mates errors in parameter fits to real data because it assumes that
there are no deviations from ideal behavior such as those due to
fluctuations in lamp intensity or minor flow artifacts in a
stopped-flow experiment.

Our method to conduct the confidence contour search ac-
counts for variations due to statistical sampling by setting a fixed
threshold in the SSE for each experiment. However, we have not
yet found an appropriate function to predict the threshold. In this
article, we have illustrated the method with a threshold set at a
25% increase in SSE, which provides a conservative estimate of
the confidence in each parameter, although a 10% increase in
SSE may represent a more realistic threshold to establish errors
in the cases described. Although there is no statistical basis for
a fixed arbitrary threshold, we have found a 10 to 25% increase
in SSE to be a useful standard derived from our experience in fit-
ting dozens of data sets with a wide range of mechanisms, with
varying numbers of fitted parameters, and with various numbers
of data points and differing signal/noise ratios. In the program,
the user can set the threshold while the graphical display and a
table showing upper and lower limits on parameters are updated.
The set threshold is seen as the yellow band in the SSEmin/SSEx,y

function in the colored version of the confidence contours (avail-
able online) or as the light band surrounding the dark center in
the black-and-white (print) rendition. We suggest that users re-
port the following statistical information to describe the errors
in fitting: number of data points, average sigma value (obtained
from the nonlinear regression), threshold used for the SSE con-
tours, and range of values allowable for each parameter based
on that threshold.

It should be noted that the use of the fixed threshold correctly
identified the lower limit for each forward rate constant in the ala-
nine racemase four-step model as equal to kcat in that direction (k2,
k3 P kcat), and the same is true for the reverse rate constants. The
differences due to the value chosen for the threshold are relatively
minor in terms of the estimates of errors reported here. For exam-
ple, the lower limits on k3 for the racemase reaction are given as
1580, 1580, and 1560 s–1 for SSE thresholds of 1, 10, and 25%,
respectively. In contrast, standard statistical analysis using F tests
and bootstrap methods failed in that they supported the erroneous
conclusion that k3 was six orders of magnitude larger and known
within 10% error and failed to reject a proposed fit involving 18
parameters [10]. Thus, the very real danger of existing statistical
tests as applied to fitting multiple kinetic parameters is that they
can give false confidence in the certainty of fitted parameters that
are not well constrained.

Summary

Computer simulation now makes it easy to enter complex mod-
els to fit data, but the relationships between individual parameters
and the experimental data are obscured by the process of simulta-
neously fitting multiple parameters to multiple data sets. Too of-
ten, overly complex models are proposed and parameters are
extracted without a means to assess whether the data can support
the model. Therefore, it is especially important to establish guide-
lines for use in fitting and a method to reveal the extent to which
parameters are constrained by the data. The FitSpace confidence
contour analysis described here fulfills that need. Thus, as was
done in the case of alanine racemase, the simulation program
can be used to replicate published data, which can then be evalu-
ated to establish whether even idealized data with a normal distri-
bution of noise can support the model. Moreover, the dynamic
simulation with visual evaluation of the predicted curves allows
large jumps in parameter space to evaluate whether different sets
of parameters or combinations of linked constants can account for
the data equally well. This use of the program was critical in jump-
ing from the region of parameter space where the formation of the
alanine racemase intermediate was rate-limiting to the region
where the breakdown of the intermediate was rate-limiting
(Fig. 9). This large jump requires adjustment of multiple parame-
ters, a process that is facilitated by the use of visual feedback with
dynamic simulation.

The examples shown here were chosen to illustrate the utility of
the FitSpace confidence contour analysis both in providing realistic
error estimates on fitted parameters when the model is well con-
strained by the data and in giving a dramatic visual clue when
parameters are not well constrained. Several computer programs
are available for fitting multiple data sets simultaneously to a sin-
gle model (discussed in Ref. [11]), but all rely on error estimates
from nonlinear regression and fail to reveal when parameters are
not well constrained by the data. The combination of dynamic sim-
ulation with graphical analysis described in the accompanying
article [11] with the confidence contour analysis presented here
overcomes the limitations of standard nonlinear regression when
applied to multiparameter fitting. In particular, the example of ala-
nine racemase shows the pitfalls of the standard analysis, where
nonlinear regression and bootstrap methods greatly underesti-
mated the errors on the parameters, misleading the user into
believing parameters were well constrained when they were not.
The basis for this underestimate lies at the heart of the method
where the effect of variation in each parameter on the net SSE is
examined in the dimension of that parameter and then covariation
between parameters is examined. In the case of alanine racemase,
nonlinear regression underestimates the full extent of the strong
correlations between parameters in the overly complex four-state
model.

Computation of confidence contours is often dismissed as not
generally feasible because of their expense computationally [1].
However, the brute force computation of confidence contours is
feasible with modern computers and optimized code. Computa-
tions of confidence contours described here with well-constrained
parameters were completed in 2 to 3 min (Figs. 2 and 5), whereas
the less constrained model (Fig. 7B) required approximately
17 min to complete, each using a 2.5-GHz Intel xeon processor.
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This minor investment in computation time is trivial relative to the
distinct advantages offered by this analysis.

The confidence contour analysis produces visually rich feedback
to show the extent to which parameters are constrained by the
data and to reveal complex relationships between sets of parame-
ters. Moreover, by allowing modest deviations from the ideal fit in
exploring the parameter space, the effects of non-Gaussian errors
in the data can also be evaluated. Relative to the very large errors
in logic based on underestimation of errors by the standard meth-
ods, error analysis based on a threshold in the confidence contours
is much more robust. For now, the 10% threshold in the SSE con-
tours allows comparison of the results of various data sets when
fit to multiple parameters and provides an important and clear
indication when parameters are not well constrained by the data.
The threshold can be set in the KinTek Global Kinetic Explorer pro-
gram so that it can be modified as additional experience is accumu-
lated and as we explore possible functions for predicting the
threshold. Eliminating overly complex models from consideration,
highlighting the need for additional experimental evidence, and
cautioning against overinterpretation, are perhaps the most impor-
tant contributions of our new algorithm. In addition, the program
can be used to design new experiments and then test whether they
would be effective in providing the data necessary to constrain
important kinetic parameters.
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